转自某论坛 (i)邻接矩阵表示法,如图: 矩阵中,行和列 与图中的节点对应 也就是说,如果两节点之间有一条弧,则邻接矩阵中对应的元素为1;否则为0。可以看出,这种表示法非常简单、直接。但是,在邻接矩阵的所有 个元素中,只有 个为非零元。如果网络比较稀疏,这种表示法浪费大量的存储空间,从而增加了在网络中查找弧的时间。 同样,对于网络中的权,也可以用类似邻接矩阵的 矩阵表示。只是此时一条弧所对应的元素不再是1,而是相应的权而已。如果网络中每条弧赋有多种权,则可以用多个矩阵表示这些权。 (ii)关联矩阵表示法 也就是说,在关联矩阵中,每行对应于图的一个节点,每列对应于图的一条弧。如果一个节点是一条弧的起点,则关联矩阵中对应的元素为1;如果一个节点是一条弧的终点,则关联矩阵中对应的元素为 -1;如果一个节点与一条弧不关联,则关联矩阵中对应的元素为0。对于简单图,关联矩阵每列只含有两个非零元(一个 1,一个-1)可以看出,这种表示法也非常简单、直接。但是,在关联矩阵的所有mn 个元素中,只有 2m个为非零元。如果网络比较稀疏,这种表示法也会浪费大量的存储空间。但由于关联矩阵有许多特别重要的理论性质,因此它在网络优化中是非常重要的概念。 同样,对于网络中的权,也可以通过对关联矩阵的扩展来表示。例如,如果网络中每条弧有一个权,我们可以把关联矩阵增加一行,把每一条弧所对应的权存储在增加的行中。如果网络中每条弧赋有多个权,我们可以把关联矩阵增加相应的行数,把每一条弧所对应的权存储在增加的行中。 (iii)弧表示法 例如,例7所示的图,假设弧(1,2),(1,3),(2,4),(3,2),(4,3),(4,5),(5,3)和(5,4)上的权分别为8,9,6,4,0,3,6和7,则弧表表示如上: 为了便于检索,一般按照起点、终点的字典序顺序存储弧表,如上面的弧表就是按照这样的顺序存储的。 (iv)邻接表表示法 邻接表表示法将图以邻接表(adjacency lists)的形式存储在计算机中。所谓图的邻接表,也就是图的所有节点的邻接表的集合;而对每个节点,它的邻接表就是它的所有出弧。邻接表表示法就是对图的每个节点,用一个单向链表列出从该节点出发的所有弧,链表中每个单元对应于一条出弧。为了记录弧上的权,链表中每个单元除列出弧的另一个端点外,还可以包含弧上的权等作为数据域。图的整个邻接表可以用一个指针数组表示。例如,例7所示的图,邻接表表示为 最后的0应该表示结尾。 (v)星形表示法 星形(star)表示法的思想与邻接表表示法的思想有一定的相似之处。对每个节点,它也是记录从该节点出发的所有弧,但它不是采用单向链表而是采用一个单一的数组表示。也就是说,在该数组中首先存放从节点1出发的所有弧,然后接着存放从节点2出发的所有孤,依此类推,最后存放从节点n 出发的所有孤。对每条弧,要依次存放其起点、终点、权的数值等有关信息。这实际上相当于对所有弧给出了一个顺序和编号,只是从同一节点出发的弧的顺序可以任意排列。此外,为了能够快速检索从每个节点出发的所有弧,我们一般还用一个数组记录每个节点出发的弧的起始地址(即弧的编号)。在这种表示法中,可以快速检索从每个节点出发的所有弧,这种星形表示法称为前向星形(forward star)表示法。 例如,在例7所示的图中,仍然假设弧(1,2),(l,3),(2,4),(3,2),(4,3),(4,5),(5,3)和(5,4)上的权分别为8,9,6,4,0,3,6和7。此时该网络图可以用前向星形表示法表示如下: 《星形表示法详解及其转化算法》 注意:上面的第一张表实际上有个错误,仔细看的童鞋应该能发现,起始地址point(i) : 1 , 3 , 4 , 5 , 7 , 9 ,那个6应该是5(这里待核实) 通常情况下会设置一个st[i] 数组,和STL类似, [st[i],st[i+1]) 恰好为以结点i开头的边下标。对应于上个例子的第一张表,则该数组为: st[6]={1,3,4,5,7,9}; 还会有一个数组对应于第二张表,主要使用第三行数据, v[8]={2,3,4,2,3,5,3,4}; 下面的程序把树的前向星表示转化成左儿子-右兄弟表示,以方便后续算法实现。 图最常用的表示法是邻接矩阵和邻接表。对于静态图(建图完毕后不再修改图的结构)往往用前向星来代替邻接表,节省空间和时间。 邻接矩阵不管输入格式如何,总是很容易得到邻接矩阵,只需要注意平行边的情况。前向星邻接矩阵本身就包含了顶点序,因此很容易转化为前向星: 把邻接矩阵转换为前向星表示法: 把边列表转化成前向星的方法类似,只需要把第一顶点相同的结点串成链表,用计数器法进行结点编号分配,和前向星转化成左儿子-右兄弟一样每次插入到链表首部,在O(m)时间内可以建立前向星表示。当然,也可以按第一顶点为关键字直接进行快速排序,不过速度稍微慢一些
转自某故事会。 最近在看数据结构中图的相关知识,之前看的很混乱,现在总算是理清了,在此记录一下。 目录: 图的基本知识 广度优先搜索(BFS) 深度优先搜索(DFS) 总结 代码实现 一、图的基本知识 日常有很多地方都用到了图,比如地铁线路图,计算机网络连线图等。 图就就是下面这种由节点和连接每对节点的边所构成的图形。 这是最简单的图,我们可以根据图的一些特性将其进行分类: 1、如果给边加上一个值表示权重,这种图就是加权图,没有权重的图就是非加权图,没有权重的边只能表示两个节点的连接状态,而有权重的边就可以表示节点之间的“连接程度”。 2、如果给边加上表示方向的箭头,即表示节点之间的传递方向,这种图就是有向图,而边上没有箭头的图就是无向图。 3、如果图中任意两个节点都能找到路径可以将它们进行连接,则称该图为连通图,上面这个图就是连通图,反之则为非连通图。 下面两个图分别为加权图和有向图: 非连通图如下所示: 知道了什么是图,和图相关的算法主要有两类: 图的搜索算法:图的搜索指的就是从图的某一节点开始,通过边到达不同的节点,最终找到目标节点的过程。根据搜索的顺序不同,图的搜索算法可分为“广度优先搜索”和“深度优先搜索”两种。 图的最短路径问题:最短路径问题就是要在两个节点的所有路径中,找到一条所经过的边的权重总和最小的路径。相关算法有“贝尔曼-福特算法”,“狄克斯特拉算法”和“A* 算法”三种。 二、广度优先搜索 广度优先搜索和深度优先搜索一样,都是对图进行搜索的算法,都是从起点开始顺着边搜索,此时并不知道图的整体结构,直到找到指定节点(即终点)。在此过程中每走到一个节点,就会判断一次它是否为终点。 广度优先搜索会根据离起点的距离,按照从近到远的顺序对各节点进行搜索。而深度优先搜索会沿着一条路径不断往下搜索直到不能再继续为止,然后再折返,开始搜索下一条路径。 在广度优先搜索中,有一个保存候补节点的队列,队列的性质就是先进先出,即先进入该队列的候补节点就先进行搜索。 下图中红色表示当前所在的节点(节点A),终点设为节点G,将与节点A直连的三个节点B, C, D放入存放候补节点的队列中(与节点A直连的三个节点放入时可以没有顺序,这里的放入顺序为B, C, D),用绿色表示。 此时队列中有B, C, D三个节点,我们来看看广度优先搜索是如何对各节点进行搜索的。 1、上面左图:此时从队列中选出一个节点,优先选择最早放入队列的那个节点,这里选择最左边的节点B。将已经搜索过的节点变为橙色(节点A),搜索到节点B时,将与节点B直连的两个节点E和F放入队列中,此时队列为 [C, D, E, F]。 2、上面中图:对节点B搜索完毕,节点B不是要找的终点,再搜索节点C,将与节点C直连的节点H放入队列中,此时队列为 [D, E, F, H]。 3、然后对节点D进行同样的操作,此时队列为 [E, F, H, I, J]。 4、上面右图:对与节点A直连的节点搜索完毕,再对与节点B直连的节点进行搜索(因为剩下的点中它们最先放入队列),这里选择节点E,将与节点E直连的节点K放入队列中,此时队列为 [F, H, I, J, K]。 […]