Spring循环依赖(转)
前言
Spring如何解决的循环依赖,是近两年流行起来的一道Java面试题。
其实笔者本人对这类框架源码题还是持一定的怀疑态度的。
如果笔者作为面试官,可能会问一些诸如“如果注入的属性为null,你会从哪几个方向去排查”这些场景题。
那么既然写了这篇文章,闲话少说,发车看看Spring是如何解决的循环依赖,以及带大家看清循环依赖的本质是什么。
细看的话,会发现两个Map就可以了,一个存最终的,一个存中间的(甚至极端点一个都行),至于为何用三个,看网上有说法称第二级的Map是在2.5.4版本才引入的(也就是之前只有第一和第三层,待确认),原因就是下面讲的
IOC只使用一级缓存有什么问题?
一级缓存的问题在于,就1个map,里面既有完整的已经ready的bean,也有不完整的,尚未设置field的bean。
如果这时候,有其他线程去这个map里获取bean来用怎么办?拿到的bean,不完整,怎么办呢?属性都是null,直接空指针了。
所以,就要加一个map,这个map,用来存放那种不完整的bean。
那为什么Sping不选择二级缓存方式,而是要额外加一层缓存?
因为当使用aop时,注入的bean是代理对象,所以需要使用singletonFactories对象;
当产生循环依赖时需要注入earlySingletonObjects中的对象,但不产生循环依赖的场景是不需要的,因为循环依赖只是部分场景,提前生成early对象没有必要(有个getxxx方法,用于生成early对象),所以引入了第三层。这部分讲述了earlySingletonObjects的用途,以及为啥不能不要。
下面这点,讲的是为啥不直接创建代理,这样不要singletonFactories的用途,以及为啥不能不要。
如果要使用二级缓存解决循环依赖,意味着Bean在构造完后就创建代理对象,这样违背了Spring设计原则。
Spring结合AOP跟Bean的生命周期,是在Bean创建完全之后通过AnnotationAwareAspectJAutoProxyCreator这个后置处理器来完成的,在这个后置处理的postProcessAfterInitialization方法中对初始化后的Bean完成AOP代理。
如果出现了循环依赖,那没有办法,只有给Bean先创建代理(earlySingletonObjects),但是没有出现循环依赖的情况下,是不需要创建early对象的,这样就造成了浪费,所以设计之初就是让Bean在生命周期的最后一步完成代理而不是在实例化后就立马完成代理。(这段有点说的不明白)
正文
通常来说,如果问Spring内部如何解决循环依赖,一定是默认的单例Bean中,属性互相引用的场景。
比如几个Bean之间的互相引用:
img
甚至自己“循环”依赖自己:
img
先说明前提:原型(Prototype)的场景是不支持循环依赖的,通常会走到AbstractBeanFactory
类中下面的判断,抛出异常。
if (isPrototypeCurrentlyInCreation(beanName)) {
throw new BeanCurrentlyInCreationException(beanName);
}
原因很好理解,创建新的A时,发现要注入原型字段B,又创建新的B发现要注入原型字段A…
这就套娃了, 你猜是先StackOverflow还是OutOfMemory?
Spring怕你不好猜,就先抛出了BeanCurrentlyInCreationException!
基于构造器的循环依赖,就更不用说了,官方文档都摊牌了,你想让构造器注入支持循环依赖,是不存在的,不如把代码改了。
那么默认单例的属性注入场景,Spring是如何支持循环依赖的?
Spring解决循环依赖
首先,Spring内部维护了三个Map,也就是我们通常说的三级缓存。
下面代码可以说是很清晰了
笔者翻阅Spring文档倒是没有找到三级缓存的概念,可能也是本土为了方便理解的词汇。
在Spring的DefaultSingletonBeanRegistry
类中,你会赫然发现类上方挂着这三个Map:
- singletonObjects 它是我们最熟悉的朋友,俗称“单例池”“容器”,缓存创建完成单例Bean的地方。
- singletonFactories 映射创建Bean的原始工厂
- earlySingletonObjects 映射Bean的早期引用,也就是说在这个Map里的Bean不是完整的,甚至还不能称之为“Bean”,只是一个Instance.
后两个Map其实是“垫脚石”级别的,只是创建Bean的时候,用来借助了一下,创建完成就清掉了。
所以笔者前文对“三级缓存”这个词有些迷惑,可能是因为注释都是以Cache of开头吧。
为什么成为后两个Map为垫脚石,假设最终放在singletonObjects的Bean是你想要的一杯“凉白开”。
那么Spring准备了两个杯子,即singletonFactories和earlySingletonObjects来回“倒腾”几番,把热水晾成“凉白开”放到singletonObjects中。
闲话不说,都浓缩在图里。
上面的是一张GIF,如果你没看到可能还没加载出来。三秒一帧,不是你电脑卡。
笔者画了17张图简化表述了Spring的主要步骤,GIF上方即是刚才提到的三级缓存,下方展示是主要的几个方法。
当然了,这个地步你肯定要结合Spring源码来看,要不肯定看不懂。
如果你只是想大概了解,或者面试,可以先记住笔者上文提到的“三级缓存”,以及下文即将要说的本质。
循环依赖的本质
上文了解完Spring如何处理循环依赖之后,让我们跳出“阅读源码”的思维,假设让你实现一个有以下特点的功能,你会怎么做?
- 将指定的一些类实例为单例
- 类中的字段也都实例为单例
- 支持循环依赖
举个例子,假设有类A:
public class A {
private B b;
}
类B:
public class B {
private A a;
}
说白了让你模仿Spring:假装A和B是被@Component修饰, 并且类中的字段假装是@Autowired修饰的,处理完放到Map中。
其实非常简单,笔者写了一份粗糙的代码,可供参考:
/**
* 放置创建好的bean Map
*/
private static Map<String, Object> cacheMap = new HashMap<>(2);
public static void main(String[] args) {
// 假装扫描出来的对象
Class[] classes = {A.class, B.class};
// 假装项目初始化实例化所有bean
for (Class aClass : classes) {
getBean(aClass);
}
// check
System.out.println(getBean(B.class).getA() == getBean(A.class));
System.out.println(getBean(A.class).getB() == getBean(B.class));
}
@SneakyThrows
private static <T> T getBean(Class<T> beanClass) {
// 本文用类名小写 简单代替bean的命名规则
String beanName = beanClass.getSimpleName().toLowerCase();
// 如果已经是一个bean,则直接返回
if (cacheMap.containsKey(beanName)) {
return (T) cacheMap.get(beanName);
}
// 将对象本身实例化
Object object = beanClass.getDeclaredConstructor().newInstance();
// 放入缓存
cacheMap.put(beanName, object);
// 把所有字段当成需要注入的bean,创建并注入到当前bean中
Field[] fields = object.getClass().getDeclaredFields();
for (Field field : fields) {
field.setAccessible(true);
// 获取需要注入字段的class
Class<?> fieldClass = field.getType();
String fieldBeanName = fieldClass.getSimpleName().toLowerCase();
// 如果需要注入的bean,已经在缓存Map中,那么把缓存Map中的值注入到该field即可
// 如果缓存没有 继续创建
field.set(object, cacheMap.containsKey(fieldBeanName)
? cacheMap.get(fieldBeanName) : getBean(fieldClass));
}
// 属性填充完成,返回
return (T) object;
}
这段代码的效果,其实就是处理了循环依赖,并且处理完成后,cacheMap中放的就是完整的“Bean”了
这就是“循环依赖”的本质,而不是“Spring如何解决循环依赖”。
之所以要举这个例子,是发现一小部分盆友陷入了“阅读源码的泥潭”,而忘记了问题的本质。
为了看源码而看源码,结果一直看不懂,却忘了本质是什么。
如果真看不懂,不如先写出基础版本,逆推Spring为什么要这么实现,可能效果会更好。
what?问题的本质居然是two sum!